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The Many Roles of Molecular Chaperones 
and Co-chaperones in Tumour Biology

Role molekulárních chaperonů a ko-chaperonů v biologii nádorů

Durech M., Vojtesek B., Muller P.
Regional Centre for applied Molecular Oncology, Masaryk Memorial Cancer Institute, brno, Czech Republic

summary
Molecular chaperones (heat­shock proteins, Hsps) are proteins that maintain intracellular home­
ostasis through folding and stabilisation of the conformation of other proteins. Molecular chap­
erones are critical for survival of cells that undergo cellular stress due to their ability to guard 
the proteome against misfolded proteins and aggregation. In addition to their canonical role in 
basic cellular homeostasis and protection against external stress, several molecular chape rones 
play a fundamental role in malignant cell transformation. The level of molecular chaperones 
is increased in many solid tumours and haematological malignancies. The increased activity 
of Hsps in cancer cells reflects the ability of chaperones to compensate for stress caused by 
hypoxia, increased protein turnover and the presence of numerous mutated and potentially 
unstable proteins. In addition, chaperones allow tumour cells to tolerate genetic alterations by 
stabilising tertiary structure of mutated unstable proteins – typically oncoproteins that would 
otherwise be lethal. From this perspective, chaperones mediate the phenotypic expression of 
oncogenic mutations and contribute to all the hallmarks of cancer cells. Due to their indispen­
sable roles for cancer cells, chaperones became an attractive group of targets for novel cancer 
therapies affecting several essential oncogenic pathways simultaneously.
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souhrn
Molekulární chaperony (heat­shock proteiny, Hsps) jsou proteiny, které udržují intracelulární 
homeostázu skládáním a stabilizací konformace jiných proteinů. Díky schopnosti chránit pro­
teom před špatně složenými a agregovanými proteiny jsou chaperony nezbytné pro přežití 
buněk vystavených stresu. Kromě základní funkce v udržování buněčné homeostázy a ochraně 
před vnějšími stresovými faktory hrají některé molekulární chaperony důležitou roli i při trans­
formaci nádorové buňky. Zvýšená hladina chaperonů byla detekována u mnoha solidních ná­
dorů a hematopoetických malignit. Nárůst aktivity chaperonů v nádorových buňkách odráží 
jejich schopnost kompenzovat stresové podmínky způsobené hypoxií, zvýšenou proteosynté­
zou a přítomností mutantních a potenciálně nestabilních proteinů. Chaperony navíc umožňují 
nádorovým buňkám tolerovat genetické změny stabilizováním terciární struktury mutantních 
proteinů – typicky onkoproteinů –, které by jinak byly pro buňku letální. Z tohoto pohledu cha­
perony zprostředkovávají fenotypové vyjádření onkogeních mutací a přispívají k získání všech 
základních znaků nádorové buňky. Kvůli jejich nezbytné funkci v nádorech ovlivňující současně 
několik esenciálních onkogenních drah se chaperony staly atraktivním cílem nádorové terapie.
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Chaperones Act in 
Multichaperone Complexes
Although chaperones are relatively 
abundant, they rarely, if ever, function 
alone [1]. They typically create large mul­
tiprotein complexes that contain other 
chaperones, co­chaperones and various 
accessory proteins. Chaperone assis­
ted folding is a complex multistep pro­
cess based on non­covalent interactions 
between chaperones and their sub­
strates, called “clients”. The folding cycle 
of Hsp90 (heat­shock protein of 90­kDa)  
is driven by ATP hydrolysis which 
 enables conformational changes and 
the recruitment of different co­chapero­
nes. The mechanism of the Hsp90 fold­
ing cycle was described for the matura­
tion of steroid­hormone receptors (SHR) 

by Smith et al [2] (Fig. 1): The chaperone 
cycle starts when the newly synthesi­
sed or denaturated client protein asso­
ciates with Hsp70 (heat­shock protein of 
70­kDa), Hsp40 (heat­shock protein of 
40­kDa) and the adapter HIP (Hsp70­in­
teracting protein) to form an early com­
plex  [3,4]. Then adapter protein HOP 
(Hsp70/Hsp90­organising protein), that 
binds both Hsp70 and Hsp90 chap­ 
erones simultaneously, shifts the client pro­
tein to Hsp90 dimer and displaces Hsp40 
to form an intermediate complex. In an  
ATP­dependent manner, the Hsp90 
dimer binds the client protein and 
Hsp70, HOP and HIP are replaced by co­
chaperones p23 and CYP40 (cyclophi­
lin 40) to complete the mature com­
plex. Hormone binding to SHR in the 

mature complex leads to a conformatio­
nal change of SHR driven by ATP hydro­
lysis. Finally, SHR is dissociated and trans­
ferred to the nucleus to regulate gene 
transcription. The spectrum of folded cli­
ents is also influenced by association of 
Hsp90 with different co­chaperones. For 
example, Cdc37 (cell division cycle 37) 
is a  co­chaperone which binds to the  
N­terminal domain of Hsp90 and facili­
tates the recruitment of various kinases 
to the Hsp90 machinery [5,6]. The mecha­
nism and function of co­chaperones will 
be discussed in more details below.

Altered Chaperone Function in 
Cancer
Many client proteins of chaperones are 
unstable oncoproteins, which are highly 
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Fig. 1. Maturation of steroid-hormone receptor (sHr) in chaperone cycle driven by atP hydrolysis, where Hsp90 conformational 
state is influenced by interaction with specific co-chaperones.



Klin Onkol 2012; 25(suppl 2): 2s45– 2s49

ThE MaNy ROLEs OF MOLECuLaR ChaPERONEs aND CO-ChaPERONEs IN TuMOuR bIOLOGy

Klin Onkol 2012; 25(suppl 2): 2s45– 2s49 2S47

The Hsp90 inhibitors disrupt a complex 
between Hsp90 and HSF­1 which results 
in activation of HSF­1  [22]. HSF­1 then 
triggers gene expression of other chap­
erones (e.g. Hsp70 or Hsp27)  [23] that 
compensate for the effect of Hsp90 inhi­
bition and enable cell survival.

Recent studies have shown that HSF­1 
depletion decreased viability of multi­
ple human cancer cell lines, but had no 
effect on normal cells [24]. HSF­1 seems 
to provide another critical element in 
maintaining cellular homeostasis in the 
stressful tumour microenvironment. In 
addition, recent reports suggest that 
HSF­1 supports malignancy not only 
by facilitating the induction of Hsps, 
but also by orchestrating a  broad net­
work of heterogeneous cellular func­
tions that include proliferation, survival, 
protein synthesis and energy metabo­
lism  [24,25]. Hence, non­oncoproteins 
like HSF­1, whose functions are critical 
for cancer cells but dispensable for nor­
mal cells, may also be an attractive tar­
get for cancer therapy [26].

Another way to increase the effec­
tiveness of Hsp90 inhibition is the com­
bination of Hsp90 and Hsp70 specific 
inhibitors. The potentiation between 
Hsp70 and Hsp90 inhibition in cancer 
cells was demonstrated by co­admini­
stration of siRNA against Hsp70 and 
the Hsp90 inhibitor 17AAG [27]. Powers 
et al  [28] have also shown that simul­
taneous suppression of two cyto solic 
Hsp70s (Hsc70 and Hsp72) sensitised 
tumour cells to 17AAG. This insight 
has led to the suggestion that simulta­
neous inhibition of Hsp90 and Hsp70 
might increase the efficacy of Hsp90 
inhibitors, but so far only a  few com­
pounds that are able to inhibit Hsp70 
activity have been reported [29].

Hsp90 Inhibitors
The discovery of the antitumour activity 
of the Hsp90 inhibitors geldanamycin 
and its’ analogues opened a new field in 
anticancer therapy employing the inhi­
bition of chaperones. Hsp90 inhibitors 
are now being actively pursued by the 
pharmaceutical industry, with 17 agents 
having entered clinical trials [16,17]. One 
of the first inhibitors of Hsp90, 17AAG, is 
undergoing Phase III clinical trials with 
an improved formulation that overco­
mes several toxicities that were com­
mon in earlier trials. 17AAG binds to the 
N­terminal ATP­binding pocket of Hsp90 
and alters many of its’ normal func­
tions [18]. Inhibition of Hsp90 results in 
recruitment of E3 ubiquitin ligases such 
as CHIP (C­terminus of Hsp70­interact­
ing protein) that affects the multichap­
erone complex and leads to increased 
proteasome­mediated degradation of 
the client proteins and depletion of their 
cellular levels [19]. Recent evidence indi­
cates that Hsp90 has an approximately  
100­fold higher affinity for 17AAG in 
cancer cells than in normal cells, lea­
ding to accumulation of drug selecti­
vely in tumour cells [20]. The difference 
results from the presence of Hsp90 in 
multichap erone complexes in cancer 
cells, probably due to increased levels of 
unstable oncogenic proteins and higher 
rates of genetic instability  [21]. In con­
trast to cancer cells, normal cells contain 
a substantial pool of free Hsp90 dimer 
with lower affinity to the drug.

Hsp90 Inhibition Induces 
Compensatory Overexpression of 
Hsp70 Chaperone
The effectiveness of Hsp90 inhibitors is 
limited by compensatory stress response 
mediated by heat­shock factor (HSF­1). 

dependent on chaperone­media ted 
stabilisation of their structure. Due to 
its’ broad spectrum of clients, Hsp90 ac­
tivity is essential for manifestation of all 
cancer hallmarks [7]. Hsp90 thus parti­
cipates in self­sufficiency in growth sig­
nals, insensitivity to growth­inhibitory 
signals, evasion of apoptosis, limit less 
replicative potential, sustained angio­
genesis and tissue invasion and me­
tastasis. Therefore, the inhibition of 
Hsp90 can affect all major attributes of 
cancer simultaneously by targeting the 
clients for degradation. Inhibition of 
Hsp90 or Hsp70 may provide a broader, 
more effective anti­cancer therapy than 
inhibition of single oncogenic path­
ways. Moreover, inhibition of Hsp90 
prevents development of new onco­
gen ic mutations and thus decreases re­
sistance against this therapy. Another 
reason making Hsp90 a unique thera­
peutic target is the fact that the ma­
jority of its’ clients are regulatory pro­
teins responsible for cell growth, cell 
cycle and survival [8,9]. Tab. 1 provides 
an insight into contributions of many 
Hsp90 client proteins to the malignant 
phenotype [10].

The earliest and perhaps most dra matic 
example of this phenomenon is provi­
ded by the SRC tyrosine kinase which 
is involved in several signal transduc­
tion pathways that regulate cell growth 
and proliferation. Most oncogenic mu­
tations of SRC involve truncation of the  
C­terminal part of the protein which 
leads to a constitutively active but un­
stable protein  [11]. Normal c­SRC re­
quires only limited assistance of Hsp90 
chaperone machinery  [12] in con­
trast to mutated v­SRC that exhibits 
an unusually stable association with 
Hsp90  [13,14]. Other prominent client 
proteins of Hsp90 connected to can­
cer evolution are receptor tyrosine ki­
nases (EGFR, HER2, IGF1R and FLT3), se­
rine/threonine kinases (RAF­1, AKT and 
CDK4), mutant fusion kinases (BCR­ABL),  
transcription factors (p53, androgen 
and estrogen receptor, HSF­1 and HIF­1)  
and telomerase (hTERT)  [9]. More pro­
teins known to interact with Hsp90 can 
be viewed on http://www.picard.ch/ 
/downloads/Hsp90interactors.pdf main­
tained by Picard laboratory [15].

tab. 1. Hsp90 clients and the malignant phenotype.

Hsp90 clients Malignant phenotype
raF-1, Her2, eGFr self­sufficiency in growth signals
CdK4, cyclin d insensitivity to growth­inhibitory signals
aKt, riP, survivin evasion of apoptosis
htert limitless replicative potential
HiF-1, VeGF, VeGFr sustained angiogenesis
Met, MMP-2 tissue invasion and metastasis
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mini [47]. The phosphorylation of these 
chaperones prevents binding to CHIP 
and enhances binding to HOP. Prolife­
rating cells express lower levels of CHIP 
and higher HOP, Hsp70 and Hsp90 levels 
compared to non­proliferating cells [48]. 
Decreased CHIP expression in prolifera­
tive cells supports its’ proposed tumour 
suppressor properties, while overex­
pression of HOP may contribute to ex­
cessive Hsp90 activity and stabilisation 
of client proteins in cancer cells. These 
reports reflect elevated protein folding 
environment in cancer cells regulated by 
the action of co­chaperone expression 
and chaperone modifications.

Taken together, these findings suggest 
that targeting co­chaperones may be 
therapeutically beneficial, especially in 
combination with Hsp90 inhibitors [33].

Conclusion
Molecular chaperones are proteins that 
guide normal protein folding and de­
gradation of many key regulators of cell 
growth, differentiation and survival. In 
contrast to normal non­stressed cells, 
cancer cells are dependent on high ac­
tivity of chaperones which must com­
pensate for the stress caused by tumour 
microenviroment and genetic instabil­
ity. The difference in expression level of 
specific co­chaperones in different can­
cers possibly influences Hsp90 affinity to 
Hsp90 inhibitors (e.g. 17AAG) suggest­
ing co­chaperones as a  new target for 
cancer therapy. Since Hsp90 inhibition 
also causes compensatory overexpres­
sion of Hsp70, the simultaneous inhi­
bition of Hsp90 and Hsp70 chaperones 
might increase the efficacy of Hsp90 in­
hibitors. Thus, targeting the most abun­
dant molecular chaperones Hsp70 and 
Hsp90 seems to be a powerful approach 
in cancer therapy in the future.
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