
Laboratoř experimentální medicíny, DK LF UP a FN, Olomouc

Možnosti predikce účinnosti nízkomolekulárních EGFR1 inhibitorů

^{1,4}Hajdúch M., Berkovcová J., ¹Trojanec R., ¹Janošťáková A., ²Kolek V, ²Grygárková I, Witta S.

¹Laboratoř experimentální medicíny při Dětské klinice LF UP a FN Olomouc, ²Klinika TRN, LF UP a FN Olomouc, ³Colorado University, Aurora, Colorado, ⁴Onkologická klinika LF UP a FN Olomouc,

Common Approaches to Targeting HER1/EGFR

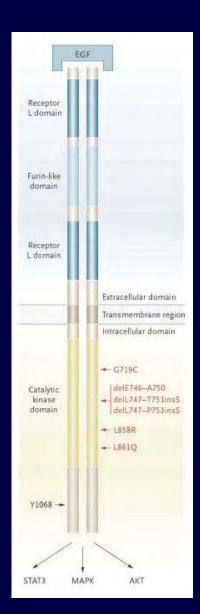
Slamon DJ, Leyland-Jones B, Shak S, et al. *N Engl J Med.* 2001;344:783-792; Mendelsohn J, Baselga J. *Oncogene.* 2000;19:6550-6565; Noonberg SB, Benz CC. *Drugs.* 2000;59:753-767; Raymond E, Faivre S, Armann JP. *Drugs.* 2000;60(Suppl 1):15-23; Arteaga C. *J Clin Oncol.* 2001;19:32s-40s; Pedersen MW, Meltom M, Damstrup L, et al. *Ann Oncol.* 2001;12:745-760.

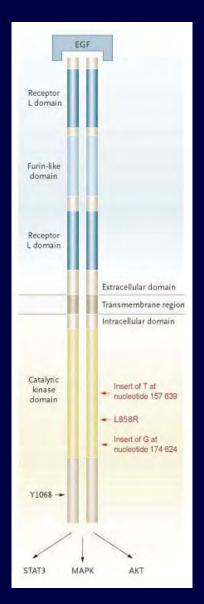
Somatic Mutations in the Tyrosine Kinase Domain of EGFR

EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy.

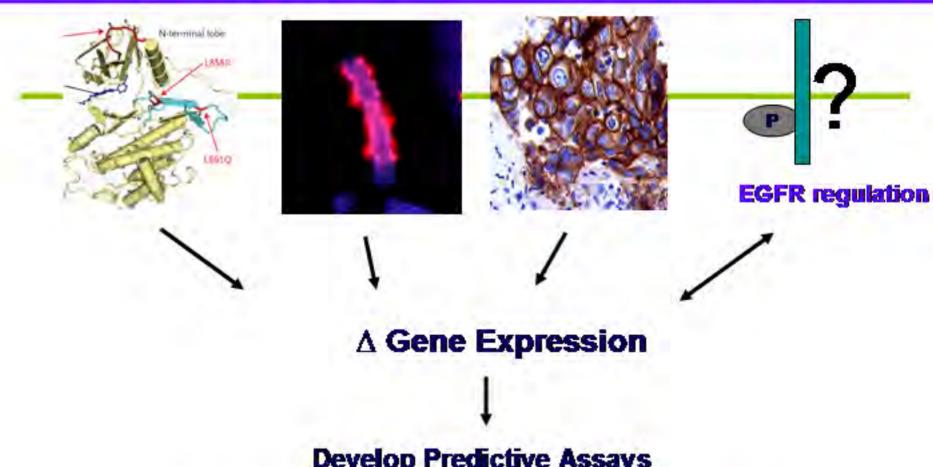
Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M.

SCIENCE April 29, 2004


Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non –Small-Cell Lung Cancer to Gefitinib


Thomas J.Lynch,M.D.,Daphne W.Bell,Ph.D.,Raffaella Sordella,Ph.D.,Sarada Gurubhagavatula,M.D., Ross A.Okimoto,B.S.,Brian W.Brannigan,B.A.,Patricia L.Harris,M.S.,Sara M.Haserlat, B.A., Jeffrey G.Supko,Ph.D.,Frank G.Haluska,M.D.,Ph.D.,David N.Louis,M.D.,David C.Christiani,M.D., Jeff Settleman,Ph.D.,and Daniel A.Haber,M.D.,Ph.D.

NEW ENGLAND JOURNAL OF MEDICINE, MAY 20, 2004

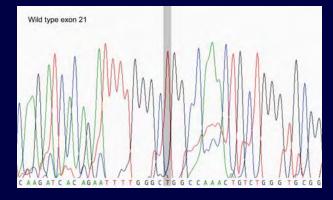


Mutations in gefitinib NSCLC responders

Gene Expression and Predicting Response the EGFR TK-Inhibitors

Develop Predictive Assays
Novel Targets
Pathway alterations to improve sensitivity

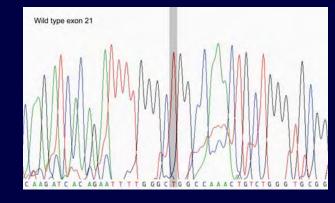
Tissue processing: direct DNA extraction



Specific DNA amplification & sequencing

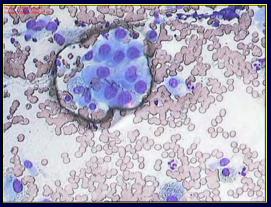
DNA extraction:

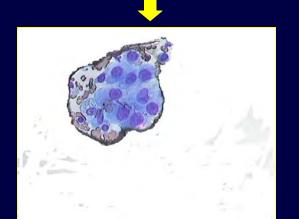
- 2. Tissue elution
- 3. Phenol-chloroform extraction
- 4. DNA easy tissue kit (Qiagen)

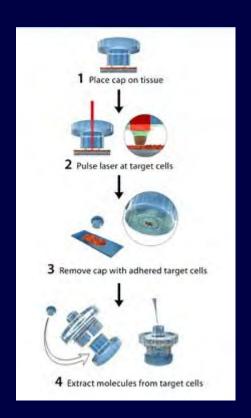


Tissue processing: macrodissection

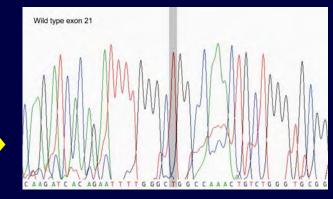
Specific DNA amplification & sequencing

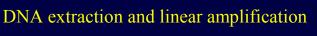

DNA extraction:



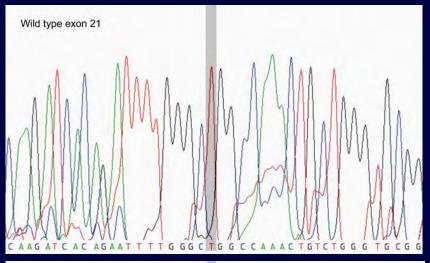

- 2. Tissue elution
- B. Phenol-chloroform extraction
- DNA easy tissue kit (Qiagen)

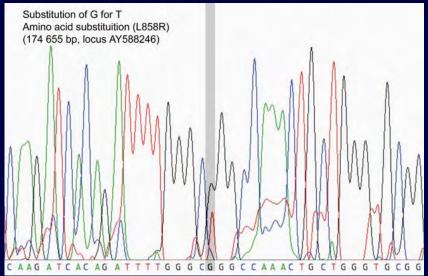
Tissue processing: Laser capture microdissection (LCM)





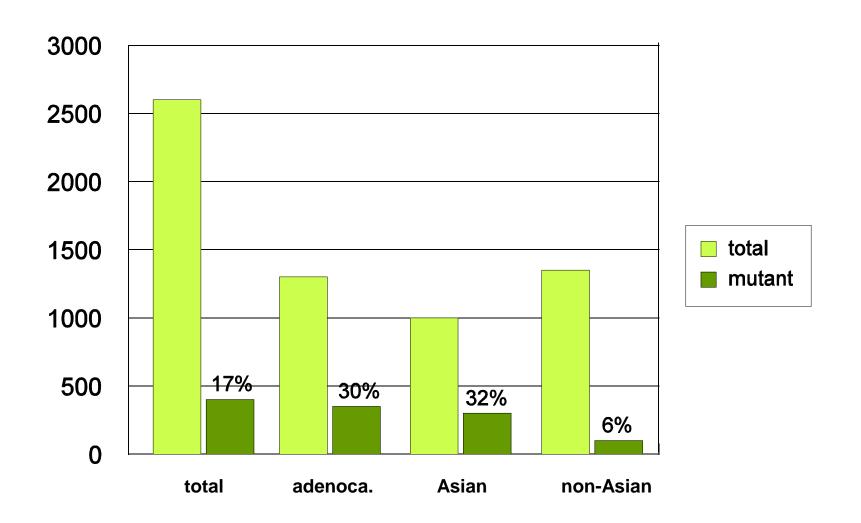
Specific DNA amplification & sequencing

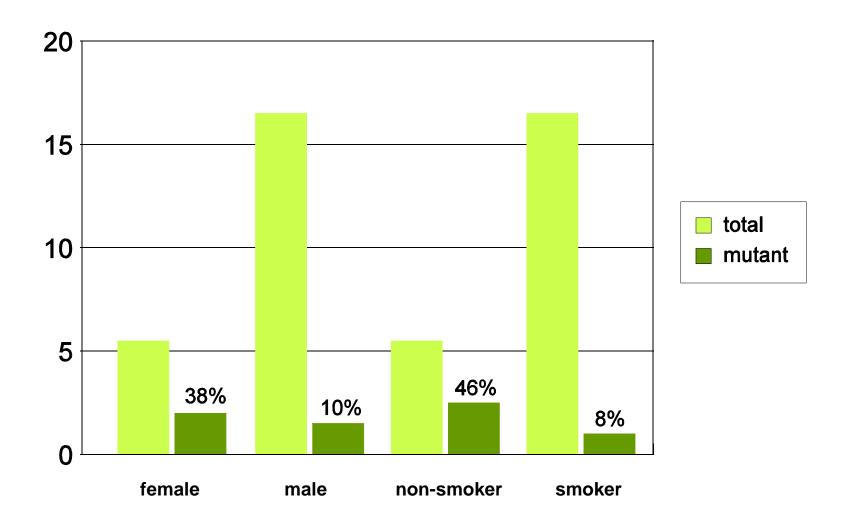




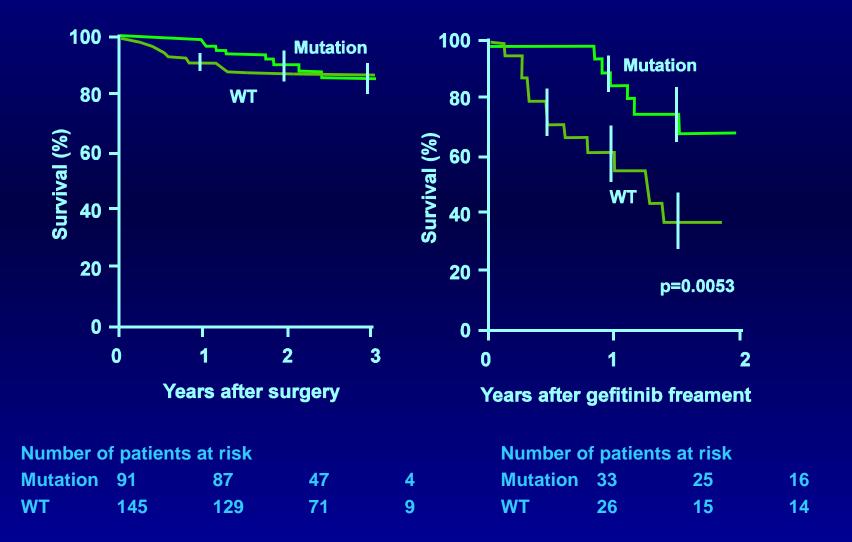
EGFR alterations in gefitinib NSCLC partial responder

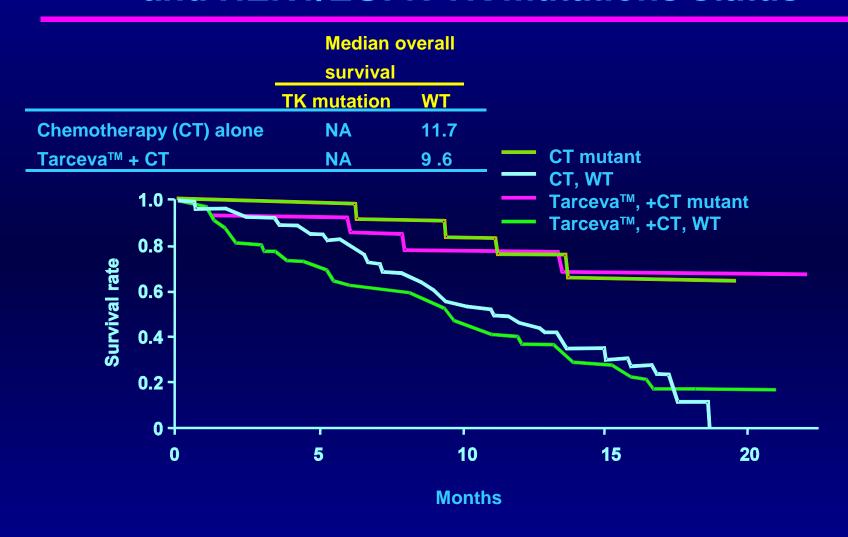
Exon 21



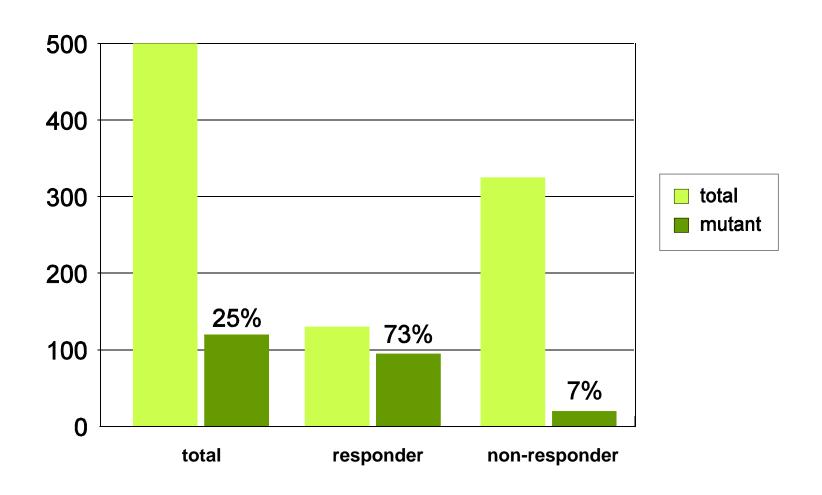

EGFR mutations in resected **NSCLC** patients

Author	#	М	utations	Race	Comments
	patient s	Total	adenoca		
Huang 04	101	39 (39%)	38 / 69 (55%)	Chinese	No difference in smoking history
Kosaka 04	277	111 (40%)	110 / 224 (49%)	Japanese	More mutations in female, adenoca, never- smokers; reciprocal exclusion with K-ras
Tokumo 05	120	38 (32%)	37 / 82 (45%)	Japanese	More mutations in female, adenoca, never-smokers
Qin 05	41	10 (24%)	7 / 17 (41%)	Chinese	More mutations in adenoca
Soung 05	153	30 (20%)	25 / 69 (38%)	Korean	More in adenoca and never smokers; reciprocal exclusion with K-ras
Marchetti 05	860	39 (4.5%)	39 / 375 (10%)	Italian	No mutations in squamous and large cell carcinomas; reciprocal exclusion with K-ras
Stephens 04	120	2 (2%)	2 / 51 (4%)	English	caroniomae, reespreedar exercises man ix rae
Weber 05	60	2 (3%)	NR	Caucasians	
Shigematsu 05	617	130 (21%)	114 / 289 (40%)	Mixed, including East Asians	More mutations in female, adenoca, never- smokers and East Asians; reciprocal exclusion with K-ras
Yan 05	219	26 (12%)	25 / 16 (5%)	Caucasians and African Americans	More mutations in female, adenoca, neversmokers and Caucasians


10 studies, 2568 resected NSCLC

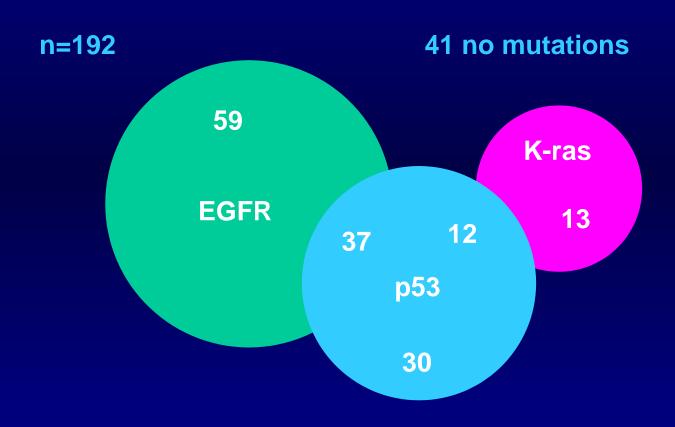

8 studies, 2295 resected NSCLC

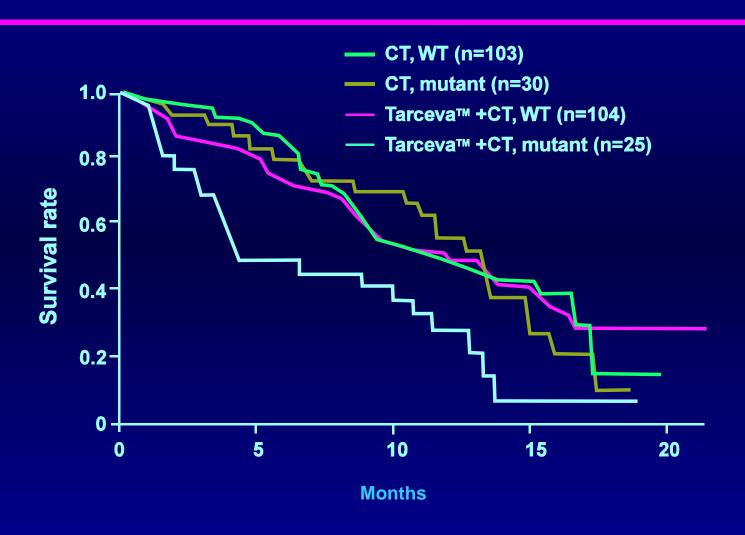
Effect of HER1/EGFR mutations on survival from surgery and from gefitinib


TRIBUTE: overall survival by treatment and HER1/EGFR TK mutations status

Patients treated with EGFR TKIs and EGFR mutations

Author	EGFR	#	Series	Mutants /	Mutants /	Race
	inhibitor	patient		Responders	Non-responders	
Lynch 04	gefitinib	16	selected	8 / 9	0/7	Caucasians
Paez 04	gefitinib	9	selected	5/5	0/4	Caucasians
Pao 05	gefitinib	24	selected	9 / 12	0 / 12	Caucasians
Pao 05	gefitinib	36	selected	8 / 10	0 / 26	Caucasians
Amann 05	gefitinib	3	selected	3/3	0	Caucasians
Huang 04	gefitinib	16	consecutive	7/9	1 / 7	Chinese
Han 05	gefitinib	90	consecutive	11 / 21	6 / 69	Korean
Mitsudomi 05	gefitinib	59	consecutive	24 / 26	5 / 24	Japanese
Kim 05	gefitinib	27	consecutive	6/8	0 / 19	Korean
Tokumo 05	gefitinib	21	consecutive	8 / 10	1 / 11	Japanese
Cortes-Funes 05	gefitinib	83	consecutive	6 /10	4 / 66	Caucasians
Cappuzzo 05	gefitinib	89	consecutive	8 / 15	7 / 74	Caucasians
Giaccone 05	erlotinib	26	consecutive	1/5	0 / 22	Caucasians

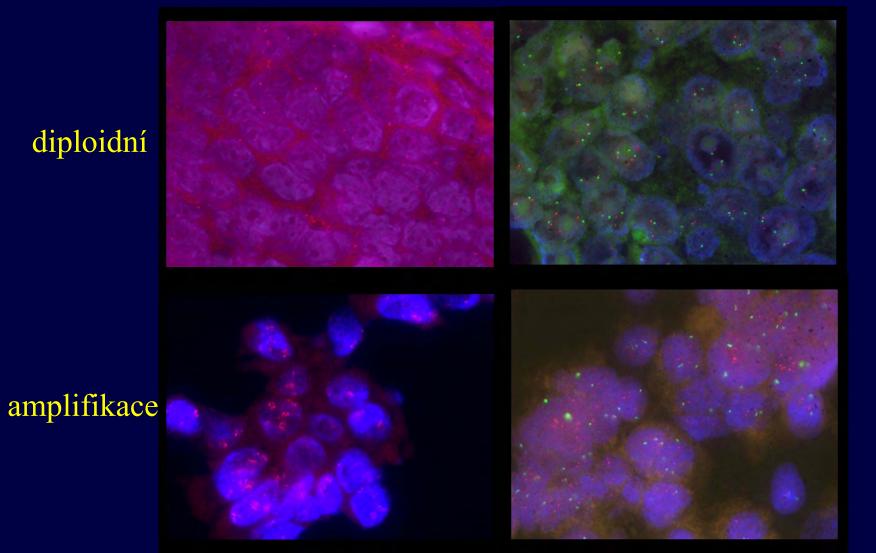

EGFR mutations and response to EGFR TKIs; 13 reports, 499 patients


Response to EGFR TKIs and K-ras mutations

Author	EGFR TKI		K-ras mutants / non-responders
Pao et al. 2005	Gefitinib or	0 /21	9 / 38
	Erlotinib		
Mitsudomi et al. 2005	Gefitinib	0/2	5 / 18
Giaccone et al. 2005	Erlotinib	0 / 4	8 / 22

HER1/EGFR gene mutations in resected NSCLC

Overall survival by treatment versus K-ras mutation status (TRIBUTE)



HER1/2 status in gefitinib NSCLC (non)responders

EGFR1 (HER1)

HER2/neu

Combination of gene copy number (FISH), protein expression (IHC) and mutation analyses and outcome to gefitinib therapy

Combinations	Number of Patients	Response Rate (N/%)	Disease Control Rate (N/%)	Median Time to Progression (months)	Median Survival (months)
FISH+/IHC+	22	10/45.5	17/77.3	9.1	20.8
FISH+/IHC-	11	2/18.2	5/45.5	2.9	8.3
FISH-/IHC+	36	2/5.6	15/41.7	3.2	10.9
FISH-/IHC-	29	0	3/10.3	2.3	4.5
P (any positive versus nega	utive/negative)	0.009	<0.001	<0.001	0.015
FISH+/Mutation +	9	7/77.7	7/77.7	15.6	20.8
FISH+/Mutation-	18	4/22.2	10/55.5	5.3	9.3
FISH-/Mutation+	6	1/16.6	2/33.3	2.1	3.2
FISH-/Mutation-	56	0	14/25.0	2.4	7.3
P (any positive versus nega	utive/negative)	<0.001	0.002	0.001	0.1
IHC+/Mutation+	11	7/63.6	8/72.7	13.5	20.8
IHC+/Mutation-	37	3/8.1	17/45.9	3.6	11.4
IHC-/Mutation+	4	1/25.0	1/25.0	2.1	2.9
IHC-/Mutation-	33	1/3.0	7/21.2	2.3	5.3
P (any positive versus nega	ntive/negative)	0.02	0.008	0.003	0.02

Molecular Analysis of the Epidermal Growth Factor Receptor (EGFR) Gene and protein expression in Patients Treated with Erlotinib in National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) BR.21

M. S. Tsao, A. Sakurada, I. Lorimer, J. Cutz, S. Kamel-Reid, J. Squire, K. Ding, F. Richardson, L. Seymour, F. Shepherd

Ontario Cancer Institute/Princess Margaret Hospital
Ottawa Health Research Institute
OSI Pharmaceuticals

University of Toronto & Queen's University

BR.21 Summary of Significant Clinical Predictors of Response

		Erlotinib (N = 427)	P value*	
Gender	Female (146)	14.4 %	0.000	
	Male (281)	6.1 %	0.006	
Histology	Adeno (209)	13.9 %	<0.001	
	Other (218)	4.1 %		
Ethnicity	Asian (53)	18.9 %	0.02	
	Other (374)	7.5 %	0.02	
Ever smoked	Yes (311)	3.8 %		
	No (93)	24.7 %	<0.001	
	UNK (23)	13 %		

^{*} Significance between subgroup

BR.21 Summary of Treatment Effect: Survival

		Hazard ratio	CI	P*
Gender	Male (475)	0.8	0.6-0.9	0.76
	Female (256)	0.8	0.6-1.1	0.76
Histology	Adeno (365)	0.7	0.6-0.9	0.37
	Other	0.8	0.6-1.0	0.37
Ethnicity	Asian (91)	0.6	0.4-1.0	0.44
	Other (640)	0.8	0.7-0.9	U. 44
Smoking	Ever (545)	0.9	0.7-1.0	
History	Never (146)	0.4	0.3-0.6	0.02
	Unknown (40)	1.1	0.5-2.6	

*P value for interaction between erlotinib and clinical variables

EGFR Mutational Analysis of the TK Domain

	Number of Patients
In the entire trial	731
Suitable for analysis	197

Mutations Found

Ex19 746-752 deletions	13 (29%)
Ex21- L858R mutation	8 (18%)
Other mutations	24 (53%)

Patient Characteristics Relating to Frequency of Mutations

	No. of pts	Percent with mutation	P value*	
Adeno	95	28 %	0.05	
Non-adeno	82	16 %	0.05	
Female	66	24 %	NC	
Male	111	22 %	NS	
Never smoked**	42	31 %	NS	
Ever smoked**	131	21 %	INO	
Asian	12	50 %	0.03	
Other	165	21 %	0.03	

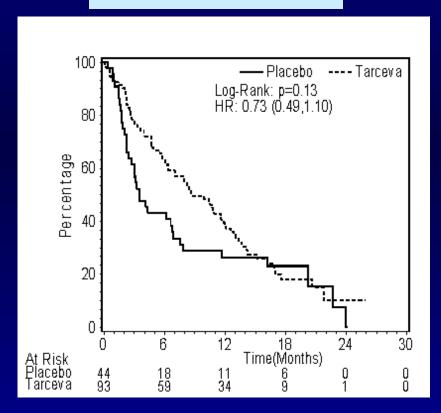
^{*}Significance between subgroup

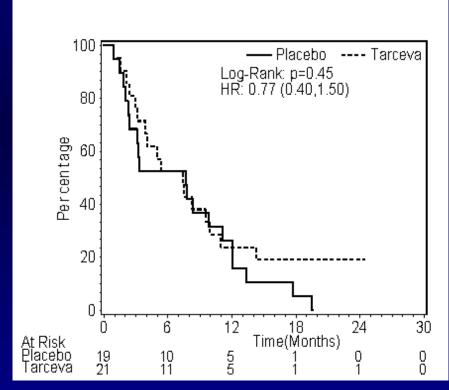
^{**}Smoking status unknown in 4

Response* to Erlotinib Therapy for Patients with Mutation Results

	No. of pts	No. evaluable for response	Overall response rate (95% C.I.)	P value
Wild type	137	81	7.4% (3.5%, 15.4%)	
Mutation	40	19	15.8% (6.1%, 39.6%)	0.37

Survival Benefit from Erlotinib in Patients with Mutation Results


	No. of pts	HR	CI	P*	P**
Wild type	137	0.73	0.49-1.10	0.13	
Mutant	40	0.77	0.40-1.50	0.45	0.97


^{*}P value for subgroup compared to placebo
**P value for interaction

Survivals According to EGFR Genotype

NO MUTATION

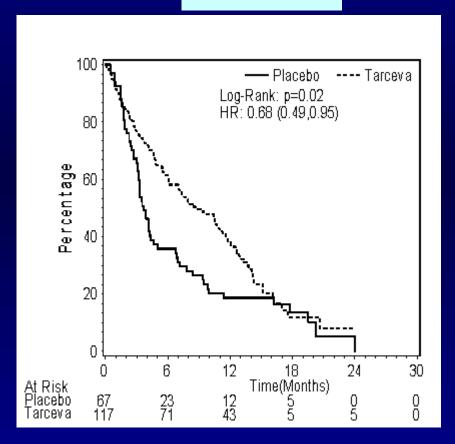
+ MUTATION

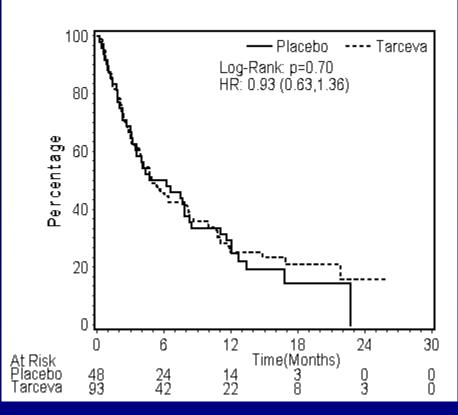
P value for interaction = 0.97

Are Other EGFR Parameters Prognostic?

 EGFR protein expression assessed by immunohistochemistry (IHC)

 EGFR gene copy number assessed by fluorescence in situ hybridization (FISH)


Response* to Erlotinib Therapy for Patients with EGFR IHC


	No. of pts	No. evaluable for response	Overall response rate(95% C.I.)	P value
All pts	731	427	8.9% (6.6%, 12.0%)	
IHC +	184	106	11.3% (6.7, 18.9%)	0.1
IHC -	141	80	3.8% (1.4%, 10.6%)	0.1

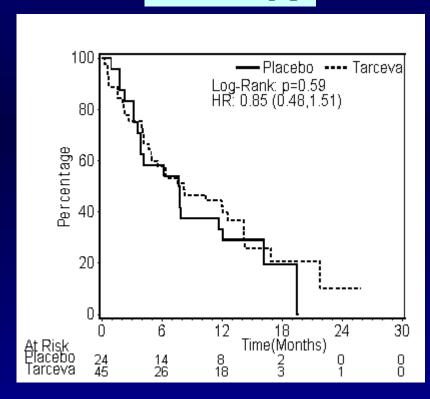
Survival According to EGFR Protein Expression

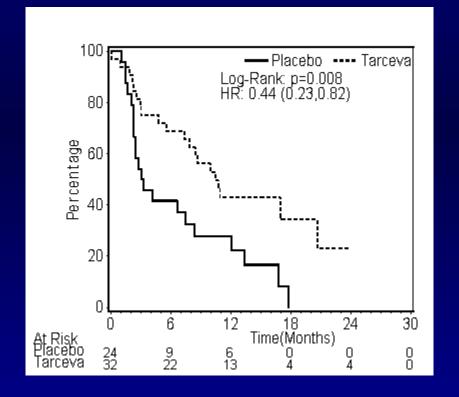
EGFR +

EGFR -

P value for interaction = 0.25

Response* to Erlotinib Therapy for Patients with EGFR FISH Results


	No. of pts	No. evaluable for response	Overall response rate(95% C.I.)	P value
Low	69	41	2.4% (0.6%, 12.9%)	0.03
High copy	56	25	20% (9.4%, 40.7%)	


* Assessed by RECIST

Survival according to EGFR gene copy number

Low copy

High copy

P value for interaction = 0.10

Conclusions

- Response rate to EGFR1 inhibitors was higher in patients with mutations, IHC+ tumors & high gene copy number.
- Mutations better predict response than survival benefit (10fold higher sensitivity of EGFR1 mutated tumors to EGFR1 inhibitors).
- Mutations better predict response to gefitinib (dose?).
- EGFR1 copy numbers with/without IHC predict response and possible survival benefit for both gefitinib and erlotinib.
- K-ras mutations are negative predictors for response (exon 12).
- EGFR1 mutations are unique for NSCLC.
- Prediction of therapeutic benefit for EGFR1 inhibitors in NSCLC is comparable to trastuzumab in metastatis breast cancer.
- EGFR1 amplification predicts also response to cetuximab (ASCO2005).