Diagnóza Lynchova syndromu od patologa
Lynch Syndrome – the Pathologist’s Diagnosis

Dušek M.1,2, Hadravský L.1, Černá K.2, Stehlik J.2, Švajdler M.1,2, Kokošková B.1,2, Dubová M.1.
Michal M.1, Daum O.1,2
1 Šiklov ústav patologie, LF UK a FN Plzeň
2 Biopatologická laboratoř, s.r.o., Plzeň

Souhrn
Lynchov syndrom (dříve nazývaný hereditární nepolyposní kolorektální karcinom) je nejčastější genetickou příčinou familiárního výskytu kolorektálního karcinomu. Způsobuje jej zárodek mutace některého z genů, které jsou zodpovědné za opravy chyb ve struktuře DNA způsobující případné pokusy pro reprodukci. V důsledku toho dochází k dysfunkci opravného komplexu způsobující rozvoj nestabilitu mikrosatelitů (MSI), která je asociována s zvýšením rizika vzniku nádorů, zejména kolorektálního karcinomu. V současné době se odhaduje, že až 5% kolorektálních karcinomů vzniká v souvislosti s Lynchovým syndromem. Vzhledem k této poměrně vysoké četnosti, absenci premorbidního fenotypu, familiárního výskytu a prezentaci maligních nádorů v produktivním věku je včasná diagnostika Lynchov syndromu důležitá nejen ze zdravotního, ale i ekonomického hlediska. Klinická kritéria představována zjištění nebo revidovanými Bethesdakými kriteriemi, která byla navržena pro detekci pacientů vhodných ke genetickému vyšetření možnosti Lynchov syndromu, nejsou však dostatečně senzitivní. Vyšší senzitivitě by došlo aplikaci moderního metodologického přístupu. Tato diagnostika je založena na přímém nebo nepřímém příkazu MSI. Mezi nové metody nepřímého příkazu MSI patří jednak detekce morfologických znaků soubírkových s MSI při histologickém vyšetření vzorků kolorektálních karcinomů, jednak immunohistochemické vyšetření expresu MMR proteinů, které navíc umožní i identifikaci dysfunkčního proteinu. K vyloučení sporadických MSI-H karcinomů způsobených somatickou epigenetickou inaktivací MMR genu založeno testování slouží hlavně vyšetření genu BRAF a analýza metylyace promotoru genu MLH1. Podezření na Lynchov syndrom vyplývající z výsledků těchto vyšetření by mělo být nakonec potvrzeno detekcí zárodečné mutace některého z MMR genů v periferní krvi pacienta.

Klíčová slova
kolorektální karcinom – Lynchov syndrom – HNPCC – MSI – nestabilita mikrosatelitů

Summary
Lynch syndrome (formerly known as hereditary non-polyposis colorectal cancer) is the most common hereditary colorectal cancer syndrome. The syndrome is caused by a germline mutation of one of the mismatch repair (MMR) genes responsible for DNA replication error repair. Impaired function of the proteins encoded by these genes leads to microsatellite instability (MSI), which is associated with increased incidence of neoplasms: mainly colorectal cancer. According to recent estimates, up to 5% of all colorectal cancers are associated with Lynch syndrome. Due to this relatively high frequency, familial occurrence, absence of premorbid phenotype, and development of malignant tumors at a reproductive age, a correct diagnosis is important not only from an ethical but also from an economical point of view. Unfortunately, clinical means of diagnosis, namely, the revised Bethesda guidelines designed to detect patients suitable for genetic testing for Lynch syndrome, lack sufficient sensitivity. The methods associated with modern pathology are more sensitive than the clinical criteria used to detect patients suspected of having Lynch syndrome. Pathological diagnostics are based on direct or indirect detection of MSI. Indirect methods include analysis of morphological signs associated with MSI in histological samples from colorectal carcinoma patients and immunohistochemical investigation of MMR protein expression. To rule out sporadic cases caused by epigenetic inactivation of an MMR gene, molecular genetic investigation of the BRAF gene and methylation analysis of the MLH1 promoter are performed during diagnostic workup. A suspicion of Lynch syndrome based on the results of the methods mentioned above should be proven by detection of a germline mutation in an MMR gene in peripheral blood leukocytes.

Key words
colorectal cancer – Lynch syndrome – HNPCC – MSI – microsatellite instability

Práce byla realizována za podpory Interní grantové agentury MZ ČR (IGA MZ ČR) pod grantovým číslem IGA NT14227 a s přispěním SW 260171/2015. This work was supported by IGA NT14227 with contribution of SW 260171/2015.

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

Redakční radou potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikování zaslání do biomedicínských časopisů.

The Editorial Board declares that the manuscript met the ICJME recommendation for biomedical papers.

doc. MUDr. Ondřej Daum, Ph.D.
Šiklov ústav patologie
LF UK a FN Plzeň
Dr. E. Beneše 13
305 99 Plzeň
E-mail: daum@fnplzen.cz

Obdrženo/Submitted: 9.6.2015
Přijato/Accepted: 20.3.2016

http://dx.doi.org/10.14735/amko2016180
Lynchův syndrom – definice
Lynchův syndrom (LS) je autozómně dominantní dědičně onemocnění vy-
tvázející predispozičku k vzniku maligních nádorů, patří tedy mezi familiární kar-
cinómové syndromy. Nejčastějším kar-
cinómem vznikajícím při LS je kolorek-
tální karcinom (colorectal cancer – CRC), je však vyvážené riziko vzniku i dalších malignit, zejména karcinomů endome-
tria, tenkého střeva, ovarií, ledvinové pánvičky a močovodu, nádorů mozků a kůže. Na podkladě LS vznikají podle současných odhadů až 5 % CRC. Fakt, že je dosud do značné míry přehlžen, ze-
jména v porovnání s měně častou familiá-
lární adenomatózní polytopozou (FAP), která je zodpovědná pouze za 1 % CRC, je způsoben tím, že karcinomy při LS ne-
vznikají v terénu polytopy (definováno jako > 100 polytopů), což však neznámená, že nemohou být přítomny žádné polytopy. Absence polytopy nebo jiného premor-
bidního fenotypu, tedy benigních změn, které by umožňovaly diagnostikovat teno syndrom ještě před vznikem ma-
lijního tumoru (jako je tomu třeba v případě FAP nebo neurofibromatózy 1.
 typu) výrazně ztrácí jeho včasnou klinikou diagnostikou. Na rozdíl od fami-
liárních karcinomových syndromů s premorbidním fenotypem tak může být LS diagnostikován prakticky až při nálezu maligního tumoru, případně při genetickém vyšetření rodinných příslušníků již diagnostikovaného probandu. Výjimkou z tohoto pravidla je fenotypická variantka LS projevující se vznikem kožních seba-
ečzních nádorů, označovaná jako Muir-
Torreho syndrom (MTS) [1].
Základní klinické charakteristiky syn-
dromu karcinomové rodiny byly defino-
vány dr. Lynchem takto [2]:
1. zvýšená incidence adenokarcin-
nomů, zejména kolorektálních a
endometriálních,
2. zvýšené riziko multiplicity nádorů,
3. autozómně dominantní dědičnost,
4. vznik karcinomů v mládí a věku.

Ačkoliv by LS dlouhou dobu znám spíše pod pojmem hereditární nepo-
lýpoxní kolorektální karcinom (here-
ditáry non-polyposis colorectal can-
cer – HNPCC) [3], v soutěžně době se od tohoto označení upořádali a preferují se eponyonym Lynchův syndrom, a to jedn
ak z důvodu možností vyskytu extra-
kolorektálních malignit, jednak kvůli pří-
liš zakořeněné asociaci diagnózy HNPCC s Amsterdamskými kriterií, která je ve
štěnce různých poznatků již neudrž-
telná, a konečně i jako vyjádření úcty oty Lynchova syndromu.

V současnosti je tedy diagnóza LS založena především na molekulárně ge-
netickém vyšetření (viz následující kapitola), přičemž pro případy splňující Amsterdamská kriteriá, ale bez pro-
kazatelného genetického poškození definujícího LS, se doporučuje ter-
imná regulativní kolorektální karcinom typu X [4].

Molekulární biologie LS
Detailně je molekulárně biologický podklad LS popsan v textu určeném pří-
márně patologům [5], pro pochopení dále uváděných diagnostických algo-
ritmů je zde však třeba alespoň stručně vysvětlit základní pojmy.

MMR (mismatch repair)
MMR (neboli mismatch repair) proteiny jsou odpovědné za opravy v DNA vznikajících při replikaci (replication error repair – RER). Nejdůležitější z nich se spojují do funkčních heterodimerů MLH1-PM2 a MSH2-MSH6. Naprostá většina případů LS je způsobena záro-
decnou mutací genů kodujících tyto proteiny, tedy tzv. mismatch repair (MMR) genů [6,7]. Inaktivace obou alel některé-
ho z MMR genů vede k dysfunkci celého komplexu a ke vzniku tzv. LS-H tumorů, tedy nádor charakteristických vysokým stupněm tzv. nestabilita mikrosatelitů (mikrosatelit instability – MSI) [8,9].

Mikrosatelity
Mikrosatelity jsou v genomu hojně se vyskytující úseky DNA tvořené několika-
ásobným opakováním jednoho až čty
vzácnější i více nukleotidů. Tyto krátké repetitivní sekvence jsou snadno zranitelné při replikaci DNA, protože DNA poly-
merázla v oblasti repetiční „sklouzavá“ a v důsledku toho dochází k vzniku delších či kratších úseků. Ve „zdravé“ buňce s funkčním MMR systémem jsou tedy alterace ihned detekovány a opraveny.

MSI
Dělí jednotlivých mikrosatelitů (tedy počty opakování téhož sekvence) jsou u zdravých jedinců ve všech buňkách stejně (mezi jedinci se však líší). Pokud ovšem nedochází ke korekci chyb zvý-
kajících při replikaci, potom může dělá
mikrosatelitů v rámci jednoho jedince kolísat, už je toto zvýšující se instabili
mikrosatelitů (MSI). MSI není však jednoznačně datým stavem, který
by přímo způsoboval vznik nádorů. Dle
spise o semikvantitativní vyjádření ge-
etického poškození DNA uvedeným
mechanizmům. Stanovení stupné MSI
je tedy arbitrární a spočívá ve stanovení
nestabilita mezinázorno kodifikovaných
markerů, přičemž na základě počtu po-
štíhených markerů se rozlišují stav
(hlavní nádory) se stabilními mikrosateli-
ty (mikrosatelit stable – MSS), s niž-
kým stupněm nestabilita (mikrosatelit instability, low – MSI-L) a s vysokým stup-
ňem nestabilita mikrosatelitů (mikrosateli-
tility, instability, high – MSI-H) [10].

MSI-H tumory
Tumory s MSI-H vznikají dvěma růz-
ními mechanismy, a to buď jako spo-
radické nádory vyvolané genetickými a/nebo epigenetickými změnami v so-
matické buňce, nebo jako familiární se vyskytující nádory v rámci LS způsobené zárodečnou mutací některého z MMR genů. Repres je tehdy, je-li u osob nesou-
iných jednu zárodečně mutovanou alelu MMR genu během jejího života inaktivovanou a alela druhá, dochází ke vzniku ma-

Najzřetelji postiženými geny při LS jsou MLH1 a MSH2 (dohromady už než 80 %) [12], dále následuje MSH6 (10 %), a zbytečné případy představují vzácná zá-
rodečná postižení dalších MMR genů (PMS2, PMS1, MSH3, MLH3).

Vzácně mohou dysfunkce MMR pro-
tinou tím pádem i LS způsobovat kom-
plikovanější mechanismy, jako záro-
dečná hypermetylace promotoru genu MLH1 vedoucí k jeho epigenetické inak-
tivaci [13,14] nebo zárodečné delecce 3’ konce genu EPCAM (TACSTD1), které
zase vedou k epigenetické inaktivaci MSH2 [15,16].

Variabilita klinických projevů LS

Klasický typ LS se prezentuje především CRC vznikajícím v tlustém střevě bez polyózy (tedy hereditárním nepolyózovým CRC). Mohou však být přítomny i extrakolonické malignity, a to relativně častěji u pacientů se zároveň mutací v MSH2 než MLH1 [17]. Mutace v MSH6 jsou zodpovědné za ponekud atypické prezentace LS, neboť mají jednak nízkou penetranci, dále jsou škrat častější asociované s karcinomy endometrií než s nádory kolorektu, a navíc jsou u těchto pacientů CRC (v porovnání s LS způsobenými mutacemi jiných MMR genů) častěji levostronně. Důležité také je, že mutace v MSH6 nevedou vždy k MSI-H, pravděpodobně díky tvorbě alternativeního heterodimeru MSH2-MSH3, což může negativně ovlivnit jejich diagnostiku [18,19]. V některých případech je kombinace klinických znaků známa jako mužský syndrom, který je nezbytně představovat pouze varianty LS.

Muir-Torreho syndrom

MTS zahrnuje kombinaci nejméně jednoho kožního nádoru se sebaeco z působení diagnostice a minimálně jednoho visceralního tumoru. Již v roce 1963 dr. Henry Lynch poukázal na společnou možnost etiologie MTS a LS, když identifikoval pacienty s fe notypem MTS v rodině postižené LS [20]. MTS jako variantu LS je unikátním v tom, že jako jediná představuje premorbidní fe notyp, tedy vykazuje znaky umožňující diagnostiku LS ještě před rozvojem CRC.

Kožní léze asocované s MTS jsou de tailně popsané v textech určených pří márně patologům [1] a gastroenterol ologům [21], obecně lze shromažďovat, že mnohočetné kožní nádory se sebaeco z působení diferenc-ací vyskytující se u jedinců před 50. rokem života nebo po stihajícì téží partie mimo obličeji jsou silným indikátorem MTS [22].

Turcotův syndrom 1. typu

Turcotův syndrom (TS) je klasicky charakterizovaný společným výskytém nádorů mozku a CRC. Podtyp označovaný jako TS 1. typu je blíže specifikován vaz bou mozkového nádoru (hlavně gliomu) s CRC bez polyózy, přičemž může být také způsoben zároveň mutací ně kterého z MMR genů, mutace byly detekovány zejména v MLH1 a PMS2 [23]. Za těchto podmínek se TS 1. typu jeví ve většině případů jako fenotypicky varianta LS, zejména v ušlechtěných a mladistvých pacientů pak ještě více bývá součástí syndromu biallelickeho mismatch repair deficitu.

Syndrom biallelickeho mismatch repair deficitu

Syndrom biallelickeho mismatch repair deficitu (biallelic mismatch repair deficit) – BMMR-D, také constitutional mismatch repair defect (CMMRD) je velmi vzácně se vyskytující zároveň biallelicke mutace genů MMR. Vzhledem k tomu, že jde o nemožněné dédické autozorně recesivní, vyskytuje se zejména jako následek incestu. Tento stav je charakteristický fenotypickým obrazem přijmujícím nádržní formou tumorů 1. typu, zejména skvrnami cafe-au-lait, vznikněm CRC již v mládí (průměrný věk v době diagnózy 16 let), mozkovými nádory, především glialoblastomy vznikajícími v prvních dvou dekádách života, a hematologickými nádory (hlavně T lymfomy) [24,25].

Z diagnostického hlediska je důležité, že imunohistochemický stanovený deficit MMR proteinu může vysloužit senzitivitu nezvýšit vyschnutí MSI [26], přičemž tento imunohistochemický test lze provest i v něnádory tkání, npr. v kožní biopzi [27].

Možnosti diagnostiky LS

Tрадиція клиничної diagnozi LS

Ke klinické diagnostice HNPCC při mírově sloužila Amsterdamská krité ria [28], která byla pro zvýšení senzitivity, zejména s příhlednou k možnosti prezentace syndromu extrakolonickou malignitou, v roce 1998 revidována na Amsterdamská kritéria II [29]. Ale protože se zlatým standardem diagnózy LS stalo molekuly exogené vyšetření, v popředí záměru se ocitlo záhyt co nejvyššího množství pacientů pro toto vyšetření, nikoli samotná klinická diagnóza LS.

K identifikaci pacientů s CRC, u kterých by měla být vyšetřena nestabilita mikrosatelitů (MSI), případně provedeno molekuly genetické vyšetření, byla v roce 1996 vypracována a v roce 2002 revidována tzv. Bethesda guideli nes (BG, resp. RBG), která berou v potaz nejen klinická kritéria, ale (v případě RBG) i neurologické znaky tumoru [30]. Bohužel ani tato širší kritéria nezasahuje všechny případy LS [31], zejména v případě postižení MSH6 a PMS2 [32–36]. Podle současných odhadů až 25% pacientů s LS není zachyceno systémem kritéria RBG. Jednou z velkých slabok jak Amsterdamských kritérií, tak (RBG) je duševní správa získanou rodinou anonymizovanou, kterou mohou připrout zmíněné nedostatky, ať už kvůli nedostatečnosti informovanosti pacienta, nezájmu vyšetřujícího lékaře, často nejistost o případě biologického otcovství nebo i nízké penetranci zároveň mutace (zejména v případě genu MSH6).

Moderní patologická diagnostika LS

Mezi hlavní argumenty pro současnou snahu o zavedení senzitivnějšího systému depistace, byť i značnou snížení specificity, které je v tomto případě možné familiární tendence ke vzniku maligních nádorů označujeváně jak z hlediska etického, tak ekonomického, patří tato fakta:

1. falešná negativita v případě LS nemá za následek nerozpoznání tohoto syndromu pouze u vešetřovávaného pacienta, ale i u jeho případných příbuzných;
2. příbuzné 1 ze 660 lidí je nositelem germální mutace některého z MMR genů [37];
3. riziko vzniku CRC u LS je 60–80% [38,39];
4. k progrese z adenomu do karcinomu pravděpodobně dochází během 2–3 let, na rozdíl od v 8–10 let u sporadických případů [40,41];
5. průměrný věk v době diagnózy je 45 let, tedy asi o 20 let méně než u sporadického CRC, navíc se zvýšeným rizikem synchronního a metachronního CRC [40].

V současné době jsou k dispozici tři základní modely vyhledávání pacientů s podezřením na LS, přičemž všechny mají
Schéma 1. Management diagnostiky LS.

Není-li místním pracoviště patologie vybaveno laboratoří disponující možností imunohistochemických a molekulárně genetických vyšet- ření uvedených výše, měl by patolog provést histologické vyšetření znaků „MSI-H histologie“ podle modelu PREDICT. V případě spektro- ního Semí PREDICT skóre pak odeslat vzorek karcinomu (a optimálně i nenádorové tkání pro možnost komparace) na specializované pracoviště provádějící výše uvedená imunohistochemická a molekulárně genetická vyšetření. Alternativně může být indikaci k tomuto odeslání na specializované pracoviště žádost gastroenterologa či onkologa v případě klinické suspekce na LS (např. na podklad RBG). Klinické podezření na hereditární podklad onemocnění může být stimulováno i pro další pokračování vyšetřování pacientů, u nichž byl LS běžným algoritmem vyložen (např. může být dále vyšetřována možnost MAP).

společné, že detekují MSI-H tumory, a to buď přímo (tedy molekulárně genetickým stanovením MSI), nebo zprostředko- vané. Do této druhé skupiny patří jednak imunohistochemické detekce MMR pro- teinů, jednak histologický průkaz morfo- logických znaků asociovaných s MSI. V každém z modelů diagnostikujících MSI-H tumory je ale nutné před samot- nou finančně nákladnou detekcí germi- nálních mutací MMR genů vyloučit mo- žnost sporadických forem, protože čtyři z pěti MSI-H CRC jsou sporadické nádory způsobené zděděna nejčastěji metylací promotoru MLH1. V současné době umožňuje rozlišení sporadických a LS asociovaných MSI-H karcinomů hlavně zapojení dvou metod molekulární pa- tologie do managementu CRC. První z nich je analýza genu BRAF, konkrétně průkaz substituce V600E, která je přítomna až u 1/2 sporadických MSI-H CRC, ale (téměř) nikdy u LS. Mutovaný pro- tein navíc může být v nádoru prokázán i monoklonální proti- lítakou [42]. Druhou metodou představuje průkaz hyperme- thylace promotoru MLH1, která je marke- rem sporadických MSI-H CRC, a naopak až na výjimky nebyvá přítomna u LS [43]. Novější je také k dispozici proti- lítaka proti annexinu A10 umožňující odlišit sporadické MSI-H karcinomy od LS [44].

1. Stanovení MSI
Rozlišení tumorů na MSS, MSI-L a MSI-H na základě stanovení nestability mezi- národně kodifikovaných markerů se sa- mořezně v diagnostic ke LS využívalo již dříve, ale cíleně, u pacientů splňujících BNG (resp. RBG). Některé laboratoře za- vedly plošné vyšetření všech CRC touto metodou k depistaci LS.

Mezi nevýhody tohoto systému patří výrazný nárůst zátěže laboratóři mole- kulární genetiky, absence informace o tom, který z MMR genů je postižen, a konečně i fakt, že (navzdory obecnému přesvědčení) ne všechny LS asociované nádory musí vykazovat MSI-H (zejména jde o pacienty s germinalní mutací genu MSH6). Praktické využití plošného vyšet- řování MSI narůst těž na nezbytnost po- rovnání stavu markerů ve tkání nádoru s nenádorovou tkání. To vyžaduje bud
přítomnost nenádorové tkáně v materiálu (např. chirurgický okraj střevního resekátu), nebo odběr periferní krve pacienta (zejména v případě endoskopické získaných vzorků).

2. Imunohistochemická detekce MMR proteinů
Na našem pracovišti používáme jako vstupní vyšetření pro zaražení pacienta do diagnostického managementu LS imunohistochemické vyšetření exprese hlavních MMR proteinů (tedy MLH1, PMS2, MSH2 a MSH6) u všech CRC a karcinomů endometria.

Senzitivita imunohistochemického vyšetření MMR proteinů a stanovení MSI je srovnatelná [45]. V současné době jsou obě metody (stanovení MSI a imunohistochemické vyšetření) vnímány jako komplementární, protože v kombinaci mají vyšší senzitivitu než při samostatném použití [46,47]. Také Jeruzalémská kritéria, podle nichž by měly být imunohistochemicky vyšetřeny všechny CRC u pacientů mladších 70 let, podporují imunohistochemické vyšetření za vhodnou vstupní diagnostickou metodou [48]. Argumenty pro upřednostnění imunohistochemického vyšetření jako iniciální diagnosické metody jsou tyto:

1. vyšší záhyt případů s mutací MSH6, které mohou unikat při detekci MSI pomocí PCR, protože MSH2 může také tvořit komplex s MSH3 a tím pádem nemusí nutně vést ke stavu MSI-H [45,49];
2. imunohistochemická detekce MMR proteinů, na rozdíl od stanovení MSI, umožňuje určit postižený gen pro molekulárně genetické vyšetření, což výrazně sníží náklady při následné detekci případně zárodné mutace;
3. při iniciálním vyšetření není zapotřebí kontrolní nenádorová tkání;
4. imunohistochemické vyšetření zředali i případy BMMR-D, které se často nejprve stabilizují mikrosatellity.

Další kroky diagnostického managementu založeného na iniciální imunohistochemické detekci MMR proteinů demonstruje schéma 1.

3. Histologická detekce morfoligických znaků asociovaných s MSI-H
Pro většinu pracovišť patologie, která vyšetřuje bioppticke vzorky karcinomů tlustého stéva, endometria a dalších nádorů, však nejsou výše uvedené diagnostické metody přímo dostupné. I tato pracoviště se však mohou podílet na depistácí LS, a to detekcí histologických znaků charakteristických pro CRC s vysokým stupněm nestability mikrosatellitů, tedy takzvané „MSI-H histologie", která samotná může vyšší senzitivitu zhruba dvanáctinásobit výjimky Genetického kritérií RBG [50].

Z více různých studií, jejichž cílem byly nařízení racionální histologický algoritmus detekce MSI-H karcinomů [51], se v současné době jako nejúčinnější model jeví Model PREDICT (Pathological Rule in the Determination of Instability in Colorectal Tumors) [50], jež měla v sérii zjednodušené formou jako Semi PREDICT skore (tab. 1). Histologickými znaky, na nichž je tento model založen, jsou: přítomnost mutací dysfunkčního genů v jakémkoli množství, přítomnost tumor infiltrujících lymphocytů (TIL), peritumorální lymphoidní lymfocytů, zastoupení plazmaticích buněk a zaplavení výškou lezy a výškou lezy ve straně převyšující 25%. Detailněji je morfológii MSI-H CRC popsaná v článku určeném patologům [5].

Mezi výhody histologického vyšetření patří i možnost levného, rychlého a jednoduchého vyložení sporadických MSI-H karcinomů podmíněných většinou somatické homologičnosti promotoru genu MLH1. Zatímco tyto vznikají se, „lesních serrat a adenomů“ (do četnosti několika zatímtozkáraných do ještě horší formy „příslušné piloritní adenomy“), prekurzorskou lézi karcinomu v terénu LS je „konvenční“ (tubulární, tubulovilozní nebo vilozní adenom). Její vznik tedy v-

Tab. 1. Model PREDICT.

<table>
<thead>
<tr>
<th>Znak</th>
<th>Skóre</th>
</tr>
</thead>
<tbody>
<tr>
<td>lokalizace v pravém tráchniku</td>
<td>1,6</td>
</tr>
<tr>
<td>disekující mucin (jakékoliv množství)</td>
<td>1,6</td>
</tr>
<tr>
<td>věk < 50 let</td>
<td>1,3</td>
</tr>
<tr>
<td>tumor infiltrující lymphocyt</td>
<td>1,3</td>
</tr>
<tr>
<td>peritumorální lymphoidní lemy</td>
<td>0,7</td>
</tr>
<tr>
<td>plazmocytové tvary > 25%</td>
<td>0,7</td>
</tr>
</tbody>
</table>

PREDICT skóre: maximální možné skóre: 7;8; suspects na MSI-H: skóre ≥ 2,5; Semi PREDICT skóre: přítomnost 2 a více znaků → MSI-H suspzktí

Problémy s algoritmy – suspzktní LS a Lynch-like syndrom
Tyto dva termíny se obvykle částečně překrývají, bohužel jsou nesouvislosti autory používají jako synonyma, ač se jejich význam lší.

Termin „suspektní Lynchův syndrom“ (SLS) se díve používal pro případy, kdy se nepodařilo prokázat molekulární podklad LS u pacienta splňujícího Amsterdamská kritéria a/nebo (RBG). Zjednodušeně řečeno, většinou se jedná o familiární se vyskytující často vícečetné karcinomy, zejména CRC, které nevznikají v terénu polypózy. Vysvětlení je samozřejmě řada, od environmentálních vlivů až po jiné familiární karcinomové syndromy, zejména tzv. MUTYH asociovaný polypózu (MAP), která se jedná nemusí projevovat polypózu, jednak CRC vznikající při bialecké mutaci genu MUTYH být také MSI-H [53].
Pojem „lynch-like syndrom“ (LLS) je užší a lépe definován. Do této skupiny patří případy CRC, které vykazují známky dysfunkce MMR systému, tédy imuno- histochemicky detekovaný deficit některého z MMR proteinů a/nebo průkaz MSI-H, spolu s vylučováním možnosti sporádického MSI-H tumoru průkazem aktivace mutace genu BRAF a lymphotylice promotoru genu MLH1, ale u nichž byly molekulárně geneticky vyšetřením průkaz vyloučeny zárodečné mutace MMR genů a 3. konce genu EPCAM. Kromě možnosti falešné pozitivních výsledků imuno-histochemického vyšetření na jedné straně a existencii mutacii nedetekovaných současnými metodami může být tento fenomén vysvětlit dvěma stavy prokázanými v posledních dvou letech: somatický mozaicizm [54] a somatickými blielaccomi mutacemi MMR genů, jejichž možnost se dříve popírala [54-57].

Závěr
LS je familární karcinomový syndrom způsobený zárodečné mutací několika genů, jehož proteinový produkt se účastní opravy chyb v DNA vzniklých při replikaci. Vzhledem k tomu, že výskyt LS v populaci se nyní odhaduje až na 5% a vede ke vzniku maligních nádorů již v produktivním věku, sily v současné době tlak na zvýšení senzitivy jeho detekce.

Efficátní algoritmus diagnostiky LS by měl být vysoce senzitivní, dostatečně specifický, (relativně) levný a logicky jednoduchý. Z hlediska senzitivy a specifity se ukázalo zcela nedostatečným spolechat na ovlivňovací kritéria (zejména rodinnou anamnézu). Proto se současné postupy zaměřují na detekcí MSI-H tumorů, a to hůří přímo, preoperativním pomocí imuno-histochemie, nebo na základě histologického průkazu morfologických znaků specifických pro MSI-H karcinomy.

Přestože se již podařilo i v násich podmínkách zavést účinný algoritmus pro diagnostiku LS, nefunguje dosud dostačující systém znělé vazby s klinickými lékaři, kterí by měli organizovat další průběžné vyšetření rodiny nemocného s LS. Na věnu je do značné míry přesáhování pacienta po kolektorní mezi chirur-
DIAGNÓZA LYNCHHOVA SYNDROMU OD PATOLOGA

