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Summary
Background: Nowadays, modern treatment methods for cancer patients are based on targeting 
specific molecules involved in cellular signaling system associated with tumor initiation and 
progression. The success of such approach depends on a correctly chosen diagnostic test with 
high sensitivity that identifies the occurrence and level of biomarkers in patients to select those 
who will respond and benefit from the treatment. The development of new technologies and 
the upgrades of the known ones contribute to the innovations in molecular characterization 
of cancer, which allows the detection of patient’s mutational status with high sensitivity and 
specificity. Purpose: Here, we discuss the utilization of the third-generation type of polymerase 
chain reaction (PCR), droplet digital PCR (ddPCR), in the molecular diagnostics of oncology 
diseases. According to the studies reported in our review, ddPCR represents a promising tool 
in genetic profiling of cancer patients. Therefore, the optimization and precise validation may 
enable gradual implementation of ddPCR into clinical practice in the field of oncology.
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Súhrn
Východiská: Podstatou moderných postupov liečby onkologických pacientov je v  dnešnej 
dobe zacielenie konkrétnych molekúl zapojených do bunkovej signalizácie asociovanej s ná-
dorovou iniciáciou a progresiou. Úspech uvedeného prístupu závisí od správne zvoleného 
diagnostického testu s vysokou citlivosťou, ktorý identifikuje výskyt a hladinu vybraných bio
markerov u pacientov pre selekciu tých, ktorí budú na liečivo reagovať a budú z neho benefito-
vať. Vývoj nových technológií a modernizácia tých známych, prispievajú k inováciám molekulár-
nej charakterizácie karcinómov, ktorá umožňuje detekciu mutačného stavu pacienta s vysokou 
citlivosťou a špecifickosťou. Cieľ: V práci diskutujeme o využití polymerázovej reťazovej reak-
cie (PCR) tretej generácie, tzv. droplet digitálnej PCR (ddPCR), v  molekulárnej diagnostike 
karcinómov. Podľa štúdií uvedených v našom prehľade predstavuje ddPCR sľubný nástroj pri 
vytváraní genetického profilu pacientov s onkologickým ochorením. Optimalizácia a presná 
validácia môžu preto umožniť postupnú implementáciu ddPCR do klinickej praxe v oblasti  
onkológie.
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Introduction
Cancer diseases represent a  serious 
global problem. Cancer is currently one 
of the leading causes of death in devel-
oped as well as developing countries [1]. 
Environmental and modern lifestyle fac-
tors, together with genetic/ epigenetic 
alterations, contribute to the genesis of 
genetically unstable cells that, in coop-
eration with local microenvironment, 
trigger the process of tumorigenesis in 
the organism. It is characterized by un-
controlled cell division, which may lead 
to the formation of an abnormal mass 
of tissue called tumor. Malignant tumors 
grow infiltratively through the tissue of 
a primary organ. When cancer cells in-
filtrate blood or lymph vessels, they can 
spread to lymph nodes or distant or-
gans and establish secondary tumors 
(metastasis) [2,3].

Modern treatment methods for cancer 
patients are based on targeting specific 
molecules involved in cellular signal-
ing system. The most common targeted 
molecules are growth factor receptors or 
proteins involved in signaling pathways, 
which affect cell processes such as prolif-
eration, angiogenesis, etc. [4]. Due to the 
fact that patients with different molecu-
lar conditions do not respond to particu-
lar treatment, the precise selection of pa-
tients for specific therapeutic approach 
is strongly recommended [5–7]. The suc-
cess of such approach depends on cor-
rectly chosen diagnostic test with high 
sensitivity that identifies the occurrence 
and level of biomarkers in patients to se-
lect those who will respond and benefit 
from the treatment  [8,9]. The develop-
ment of new technologies and upgrades 
of the known ones (genomic sequenc-
ing, polymerase chain reaction – PCR, 
etc.) lead to the innovations in molecu-
lar characterization of cancer and allow 
the detection of mutational status of tu-
mors with higher sensitivity and speci-
ficity in comparison to golden standards 
in molecular diagnostics such as Sanger 
sequencing, real-time PCR, etc. [10].

Digital PCR
The end of the 20th century is considered 
as an important milestone in the devel-
opment of molecular biology. At that 
time, Dr. Kary Mullis introduced the poly-

merase chain reaction (PCR) as we know 
it today, which was the first generation 
of PCR. Gradually, the second genera-
tion of this technique, quantitative PCR 
(qPCR), was introduced several years 
later [11,12]. The next milestone leading 
to the development of the third genera-
tion of PCR represents the description of 
the possibility of digitizing the reaction. 
In principle, the methodology is based 
on classical PCR. However, the division of 
individual DNA templates into ‘micropar-
ticles’ with amplification reaction occur-
ring for each DNA molecule separately 
and independently represents a  signif-
icant difference. As a  result, the abso-
lute quantification of the amount of mu-
tations in the sample can be performed 
without the need for prior calibration 
with a dilution series (Tab. 1) [13].

Today, three basic platforms of the 
digital PCR (dPCR) are recognized: emul-
sion or droplet dPCR (ddPCR), dPCR on 
a microtiter plate, and microfluidic dPCR 
(cdPCR). Each of them is characterized 
by its own instrumentation, specific 
method of sample separation and the 
format for PCR amplification itself (mi-
croplate, chip, oil emulsion, etc.) [14].

The ThermoFisher Scientific offers dig-
ital PCR methodology using a microtiter 
plate composed of 96 or 384 wells into 
which a  mixture of template, PCR mix, 
and TaqMan reagents are pipetted se-
quentially. After amplification, the sam-
ple is evaluated using a  digital reader 
based on TaqMan probes that detects 
the emitted signal in each well. However, 
such a format is very disadvantageous in 
terms of the cost, difficult workflow, and 
limited capacity in the number of ana-
lyzed particles/ wells [15,16].

The microfluidic dPCR format uses 
a specially designed chip that is divided 
into hundreds to thousands of small 
wells. The reagents, already prepared in 
these wells, are mixed with the sample 
by hydraulic or pneumatic pressure and 
divided into thousands of PCR cham-
bers through channels on the chip in 
which the analyzed templates are ampli-
fied separately. Today, there are devices 
automated for such pipetting that con-
tain a thermocycler to amplify the tem-
plate DNA. The evaluation is also based 
on the detection of the fluorescence sig-
nal of the individual chambers on the 
chip. However, the disadvantage is, once 
again, high financial cost compared to 
the ddPCR format [15,17].

Droplet digital PCR
The emulsion or droplet dPCR (ddPCR) is 
performed in microreactors in the form 
of nano- to picoliter droplets [18]. ddPCR 
was first introduced by QuantaLife, later 
Bio-Rad Laboratories. The newer plat-
form came from RainDanceTM Technolo-
gies, which was also purchased by Bio-
Rad Laboratories, Inc.

ddPCR has been commercialized rel-
atively recently and offers a very simple 
’workflow’ for the consistent distribution 
of DNA molecules into micro-droplets 
(Fig.1). When using a Bio-Rad platform 
(QX100TM or QX200TM), 20 µL of the sam-
ple mix is fractionated into 20,000 drop-
lets. The high-sensitivity RainDance 
platform (RainDropTM), in turn, allows 
the generation of 5–10  million drop-
lets from 25–50 µL of the reaction mix- 
ture [19,20].

Eight samples and droplet genera-
tion oil, which contains emulsion stabi-

Tab. 1. Comparison of PCR, qPCR and ddPCR methods.

PCR qPCR ddPCR

end-point detection real-time detection end-point detection

qualitative/semi-quantitative relative quantification absolute quantification

no standard curve standard curve needed no standard curve

post-PCR processing no post-PCR processing post-PCR reading

PCR – polymerase chain reaction, qPCR – quantitative PCR, ddPCR – droplet  
digital PCR
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Cube 6i Flow Cytometer (Sysmex Partec, 
Görlitz, Germany) and evaluated by FCS 
Express V5.0  software (Sysmex Partec, 
Görlitz, Germany) [23].

The evaluation of ddPCR data
Depending on the capacity of the 
chip/ plate or the amount of generated 
droplets, we obtain partial qualitative 
results based on fluorescent signals for 
the mutated and wild-type versions of 
the template DNA [14]. However, there 
is a  possibility that after the distribu-
tion of DNA molecules, the individual  
micro-particles/ wells contain either 
none or several fragments of the ana-
lyzed template. Thus, after the amplifi-
cation into the terminal plateau phase 
of the PCR reaction, a  part of the mi-
cro-reactors emits a signal and a part is 

BEAMing PCR
A special variant of ddPCR, so-called 
BEAMing PCR, also uses, in addition to 
emulsification of the sample by oil, mag-
netic beads in which the template is am-
plified [22]. When the emulsion of drop-
lets is established, each particle contains, 
ideally, one fragment of DNA template, 
a magnetic bead, and reagents for PCR 
reaction. The individual DNA molecule 
is then covalently attached to the bead 
through primers and amplified. After 
PCR amplification, the magnetic beads 
coated by DNA products are magneti-
cally purified, and fluorescent probes, 
specifically designed for the mutated 
DNA or WT DNA, are hybridized. The  
fluorescence signal of individual parti-
cles is then detected on the basis of flow 
cytometry with Sysmex Partec CyFlow® 

lizer and biocompatible surfactant, are 
loaded to specially designed cassettes. 
The prepared cartridge is then inserted 
into a  droplet generator in which the 
oil and water phases are mixed under 
vacuum conditions and monodisperse 
droplets are formed. Ideally, the gener-
ated droplets are uniform in size, ther-
mally stable, and do not overlap or crack 
during the preparation process. After the 
transfer to a thermocycler and end-point 
PCR amplification, a special reading de-
vice, based on flow cytometric and using 
TaqMan probes, senses the fluorescence 
of the individual particles in two chan-
nels, which correspond to the fluores-
cent dyes – FAM for mutated DNA and 
HEX/ VIC for wild type DNA (WT DNA) for 
Bio-Rad platforms and FAM and VIC/ TET 
with RainDropTM technology [20,21].

Fig. 1. Workflow for the consistent distribution of DNA molecules into micro-droplets.
FAM/HEX /TET/VIC – fluorescent dyes, mtDNA – mutated DNA, PCR – polymerase chain reaction, WT DNA– wild type DNA
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variations (CNVs), and hyper- or hypo- 
-methylation of genes represent the 
most frequent changes in patients with 
different kinds of cancer which could be 
identified by ddPCR with high sensitivity 
and specificity  [45,46]. In addition, the 
level of expression in some genes can be 
also diagnosed by this method [47].

The alterations in gene copy num-
bers are a phenomenon that may drive 
the process of tumorigenesis. For exam-
ple, the detection of some CNVs allows 
to distinguish benign noncancerous tis-
sue from precancerous/ cancerous tissue 
in patients with oral lesions [48]. In some 
cancers, the presence of CNVs affects 
the response to therapy and can corre-
late with patient’s prognosis [49,50]. It is 
typical for MET gene copy number de-
tection when MET-inhibitor therapy is 
set up for patients with positive CNV sta-
tus. When evaluating MET genetic altera-
tion, Zhang et al compared fluorescence 
in situ hybridization (FISH) vs. SNP 6.0 vs. 
ddPCR. The results showed the potential 
of ddPCR technique to quantify the CNV 
of MET gene with high precision and ac-
curacy in comparison to FISH and SNP 
6.0 in cancer cell lines and formalin-fixed 
paraffin-embedded (FFPE) DNA, without 
the need for standard curves or endoge-
nous control [51]. The standard methods 
like qPCR are also limited in the meas-
urement of CNVs due to the systematic 
errors, which can occur during normali-
zation of DNA concentrations with stand-
ard samples and by using cycle threshold 
(CT). On the other hand, ddPCR does not 
need standard samples and CT values for 
the detection and quantification of CNVs 
leading to less ambiguous and more ac-
curate results [45].

Modifications based on DNA methyl-
ation, especially hyper-methylation of 
promoter regions, arise in many types of 
cancer. These changes have a potential 
to become dynamic diagnostic, prog-
nostic, and predictive biomarkers. Today, 
14 of these biomarkers are used in clini-
cal diagnostics [52,53]. The utilization of 
ddPCR for the detection of DNA methyl-
ation status has appeared only recently. 
The analysis of fresh surgical margins 
of head and neck squamous cell carci-
noma using quantitative methylation-
specific ddPCR (ddQMSP) for PAX5 gene 

tration in a sample is too low and tradi-
tional methods (e. g. blood smear, ELISA, 
qPCR, etc.) are not capable to detect the 
presence of contagion [34]. On the other 
hand, using ddPCR for the detection of 
infectious agents shows higher sensi-
tivity and accuracy than conventional 
methods  [26,35–37]. The same prob-
lem is currently discussed in relation to 
SARS-CoV-2  confirmation. The results 
presented by Suo et al show high dif-
ferences between qPCR vs. ddPCR out-
comes in which 26  patients with neg-
ative reports assessed by qPCR were 
SARS-CoV-2  positive in ddPCR testing. 
The reason for such results is probably 
associated with relatively low viral load 
in the throat swabs of patients and also 
with limitations of qPCR, which could 
not capture the viral RNA. According to 
that, ddPCR should be used as a comple-
ment method for standard technique to 
reduce the false negatives, which may 
decrease the risk of viral spreading [28]. 

Today, the prenatal testing is still 
mostly performed by invasive tests 
such as amniocentesis and chorionic vil-
lus sampling, even with a 1% risk of the 
miscarriage [38]. However, cell-free fetal 
DNA isolated from maternal plasma can 
be used for prenatal diagnosis of fetal 
genetic profile in a  non-invasive man-
ner. The analysis of maternal periph-
eral blood by ddPCR for fetal sex and 
RhD determination, detection of sickle 
cell anemia, identification of fetal aneu-
ploidies (e. g. trisomy 21), and assess-
ment of fetal genotypes for hemophilia 
and β-thalassemia mutations was de-
scribed in the last decade. In all studies, 
the results were correctly determined by 
ddPCR when compared to clinically val-
idated methods [39–44]. These facts in-
dicate that ddPCR is an effective and re-
liable method suitable also for prenatal 
diagnostics.

Nevertheless, the most common 
usage of ddPCR is related to the detec-
tion of genetic alteration, especially in 
cancer-associated genes. 

ddPCR and cancer
Various molecular variations at the  
genetic and epigenetic level may be 
detected by ddPCR. Single nucleo-
tide variations (SNVs), copy number 

negative without a signal. Therefore, the 
evaluation is based on the so-called Pois-
son distribution method. Using equation 
(I), where p represents the number (frac-
tion) of positive particles, we can deter-
mine the average number of targeted 
DNA molecules per replication reaction 
or λ. Together with the reaction volume 
and the total number of analyzed parti-
cles/ droplets, the λ value is used for the 
calculation of the absolute concentra-
tion of targeted DNA.

(I) λ = –ln (1 – p)

In general, the more micro-reactors 
are analyzed, the more accurate is the de-
tection and the identification of the mu-
tated vs. the wild-type DNA sequences 
in the sample. This suggests that the for-
mat on the micro-titer plate significantly 
reduces the efficiency of the assay com-
pared to the ddPCR but it is still used 
today [18].

However, there are two other meth-
ods for data interpretation: the Tzonev’s 
approach  [24] and the calibration line 
with a  control of type I  and type II er-
rors [25]. Whereas the Tzonev’s method 
determines the limit of detection (LoD) 
in terms of a  number of events, an-
other method determines LoD in terms 
of a  number of copies per microliter 
(copies/ μL).

ddPCR in diagnostics sphere
The commercial usage of ddPCR is 
dated to 2011 when Hindson et al de-
scribed the application of ddPCR for ab-
solute quantification of circulating DNA 
and for the detection of several ge-
netic changes  [18]. Through the years, 
the method has become popular. Now-
adays, we use it as a tool for the detec-
tion of viruses and other pathogens   
[26–28], fetal screening  [29,30], and 
analysis of genetic alterations in patients 
with various disorders [31–33].

The diagnostics of pathogens, based 
on their detection in blood/ plasma, may 
be difficult in some cases. The hepatitis 
B virus, human-immunodeficiency virus, 
herpes-simplex virus or pathogens like 
Mycobacterium tuberculosis and Plas-
modium malariae can induce a  latent 
type of infection. Therefore, its concen-
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tions in plasma with mutant allele fre-
quency of < 0.1% [67]. Therefore, several 
authors published papers dealing with 
the analysis of cftDNA by ddPCR in pa-
tients with different types of cancer 
(breast, pancreatic, colorectal, bladder, 
or non-small cell lung carcinoma, etc.) 
with a high sensitivity detection thresh-
old of ~ 0.01% [68–72]. Despite the fact 
that ddPCR approach of MRD detec-
tion is highly sensitive, it still requires 
assay customization specifically to ex-
amined patient and knowledge of pre-
viously detected tumor-specific somatic 
mutations [70]. 

Conclusion
The detection of particular biomarkers 
(SNV, CNV, methylation, cftDNA, etc.) is 
critical for its clinical application in can-
cer management. High specificity and 
sensitivity of the described technol-
ogy, which have been established in 
every type of experiment focused on 
these markers, advance ddPCR to the 
next level in the field of oncology. As 
discussed in our review, ddPCR repre-
sents a new practical and relatively easy 
method with high potential in the diag
nostic area and may help to improve the 
genetic profiling of patients.

In summary, the detection of the mo-
lecular background of patients with can-
cer is highly necessary, especially for the 
therapy design. Since older methods, 
still used today, are not sensitive enough, 
the role of ddPCR as a  diagnostic tool 
may become a useful replacement.
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