Klin Onkol 2022; 35(4): 284-289. DOI: 10.48095/ccko2022284.

Background: Immunotherapy is an effective way to treat many diseases associated with disorders of the immune system by modulating immune response. It involves several ways of manipulating the immune system, which either suppress the immune response or, on the contrary, stimulates it. Immunotherapy is currently of immense importance not only in the context of the treatment of autoimmune diseases and immunodeficiencies, but it is also a promising method for treating cancer. Efforts to use the body‘s own anti-tumor response have led to the discovery of alternative treatments for cancer. Purpose: The aim of this paper is to provide a literature review focused on the current possibilities of cancer immunotherapy. In addition to classical procedures such as chemotherapy and radiotherapy, treatments consisting of adoptive cell therapy and blockade of immune checkpoints are being increasingly indicated. The latest form of adoptive cell therapy is the use of T-lymphocytes expressing chimeric antigen receptors. This type of treatment is indicated for hematological cancers. In recent years, a new approach to the treatment of cancer has emerged using blockade of immune checkpoints by monoclonal antibodies. At present, antitumor therapy focuses on blocking of inhibitory molecules – cytotoxic T-lymfocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1). Administration of anti-CTLA-4 receptor specific monoclonal antibodies blocks binding between CTLA-4 receptors and B7 ligands, thereby preventing inhibition of activated cytotoxic T cells. Another type of checkpoints of the immune response include PD-1 molecules expressed on the surface of T-lymphocytes, B-lymphocytes, but also on the surface of myeloid cells. Blockade of PD-1 receptors and PD-L1 ligands prevents the inhibition of T-lymphocytes by tumor cells, leading to an increase in the immune system‘s ability to recognize tumor cells and subsequently destroy them. Blockade of PD-1 receptors and PD-L1 ligands prevents the inhibition of T-lymphocytes by tumor cells, leading to an increased immune response to the recognition of tumor cells and their subsequent destruction. An alternative form of tumor treatment is the administration of tumor vaccines and tumor-specific monoclonal antibodies (mAbs). The use of mAbs to kill tumors requires the expression of tumor-specific antigens on the surface of tumor cells. Through these receptors, mAb targets cytotoxic cells, toxins, drugs, or radioisotopes to tumor cells and thereby destroys them. Also, mAbs are able to block angiogenesis, which is crucial in tumor cell proliferation.

http://dx.doi.org/10.48095/ccko2022284

Full text in PDF