Klin Onkol 2012; 25(6): 421-426. DOI: 10.14735/amko2012421.

Summary
New insights into cancer cells – specific biological pathways are urgently needed to promote development of exactly targeted therapeutics. The role of oncoproteins and tumor suppressor proteins in proliferative signaling, cell cycle regulation and altered adhesion is well established. Chemicals, viruses and radiation are also generally accepted as agents that commonly induce mutations in genes encoding these cancer-inducing proteins, thereby giving rise to cancer. More recent evidence indicates the importance of two additional key factors imposed on proliferating cells – hypoxia and/or lack of glucose. These two additional triggers can initiate and promote the process of malignant transformation, when a low percentage of cells escape cellular senescence. Disregulated cell proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. Resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival. The process of apoptosis is suppressed and glucose metabolism is altered. Recent investigations suggest that oxygen depletion stimulates mitochondria to compensate increased reactive oxygen species (ROS). It activates signaling pathways, such as hypoxia-inducible factor 1, that promote cancer cell survival and tumor growth. During the last decade, mitochondria have become key organelles involved in chemotherapy-induced apoptosis. Therefore, the relationship between mitochondria, ROS signaling and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel ways to facilitate discovery of cancer-specific therapies.

http://dx.doi.org/10.14735/amko2012421

Full text in PDF