Mitochondrial Processes in Targeted Cancer Therapy


Klin Onkol 2018; 31(Suppl 2): 14-20. DOI: 10.14735/amko20182S14.

Background: During tumor initiation and progress, cellular functions adapt to the new needs of the transformed cells and mitochondrial processes are also affected. Mitochondria are less extensively used for supplying cells with energy; rather, cancer cells utilize glycolysis to a much greater extent, even under aerobic conditions. Mitochondria produce metabolites required for cellular growth and proliferation. Mutations and alterations in gene expression of citrate cycle enzymes can directly contribute to transformation through the production of oncometabolites. The apoptotic pathway in which mitochondria play a critical role is disrupted in cancer cells, resulting in cells that do not respond to programmed cell death signaling. These differences between mitochondrial processes in healthy and diseased cells suggest they could be used in mitochondria-targeted therapies. To date, many potential molecular targets have been identified, including enzymes, signaling molecules, and membrane transporters. Even though this field has been studied for years, the first drugs, venetoclax and enasidenib, were only approved in the last two years and are the result of two different research approaches. Venetoclax targets the apoptotic pathway and enasidenib targets metabolic processes. The discovery of these two compounds demonstrates that it is possible to develop mitochondria-targeted cancer treatments. Purpose: The purpose of this article is to provide an overview of research in the field of mitochondria-targeting therapies for cancer. The main areas of research and the main approaches for treatment development are summarized. Cellular components studied as potential targets for therapy and compounds that are considered exploitable are described, as well as already approved drugs.

Full text in PDF