Importance of Membrane Proteins in the Treatment of Tumor Diseases and the Possibilities of Their Further Study


Klin Onkol 2018; 31(Suppl 2): 32-40. DOI: 10.14735/amko20182S32.

Background: The proteins of the cellular cytoplasmic membrane represent a heterogeneous group of proteins with different structures, localizations, and functions. They participate in many cellular processes including cellular signaling and communication with the external environment and communication between cells. Mutations and post-translational modifications alter the chemical-physical properties of membrane proteins and thus significantly affect the process of carcinogenesis. Therefore, membrane proteins represent important targets for the diagnosis and treatment of cancer. Nowadays, treatment in the form of monoclonal antibodies or low molecular weight inhibitors targets mainly receptors of growth factors on the surface of tumor cells and various types of molecules including the targets of the so-called checkpoint inhibitors on the surface of the cells of the immune system. In order to better understand the properties and functions of membrane proteins, especially with the perspective of developing new targeted approaches in therapy, mainly proteomic and molecular biological approaches are currently being used. Aim: The aim of this article is to describe the properties and functions of different groups of membrane proteins and to summarize their current relevance and potential for use in oncology. Attention is focused on those groups that regulate the proliferation of tumor cells, affect the immune response, cause drug resistance and metastasis, and are already used or accepted as potential targets of biological therapy. Glycosylation and phosphorylation are described in detail as the most studied post-translational modification of membrane proteins, and mass spectrometry is presented as an effective tool for the identification and quantification of membrane proteins.